1. 放射照相術
射線照射是由各種放射性核素,如α射線、β射線、γ射線、X射線和中子射線等,或者原子、電子、中子等粒子在能量交換過程中發(fā)射出的、具有特定能量的粒子束或光子束流。
射線照射的三種類型:
1.γ射線(伽馬射線)波長短于0.2埃的電磁波。
2.X射線介于紫外線和γ射線間的電磁輻射,一般我們?nèi)メt(yī)院做的DR片,和CT都屬于X射線。
3.α射線也稱為甲種射線
2. x射線照相術
X射線是波長介于紫外線和γ射線 間的波長很短的電磁輻射。由德國物理學家W.K.倫琴于1895年發(fā)現(xiàn),故又稱倫琴射線。
透視原因
倫琴射線具有很高的穿透本領,能透過許多對可見光不透明的物質(zhì),如墨紙、木料等。這種肉眼看不見的射線可以使很多固體材料發(fā)生可見的熒光,使照相底片感光以及空氣電離等效應。
一般來說,較大之原子有較大機會吸收X射線光子。人體軟組織由較細之原子組成而骨頭含較多鈣離子,所以骨頭較軟組織吸引較多X射線。故此,X射線可以用作檢查人體結構。
成像結果
將一片照相底片放置于人體后,X射線穿過人體內(nèi)軟組織(皮膚及器官)后會照射到底片,令這些部位于底片經(jīng)顯影后保留黑色;X射線無法穿過人體內(nèi)的硬組織,如骨或其他被注射含鋇或碘的物質(zhì),底片于顯影后會顯示成白色。
3. 放射科照相
一般24小時都有值班人員,遇到緊急情況直接拍一會就能看到結果。
4. 放射線照相術怎么考
1611年
Kepler(克卜勒):提議復合式顯微鏡的制作方式。
1655年
Hooke(虎克):「細胞」名詞的由來便由虎克利用復合式顯微鏡觀察軟木塞上某區(qū)域中的微小氣孔而得來的。
1674年
Leeuwenhoek(李文赫克):發(fā)現(xiàn)原生動物學的報導問世,并于九年后成為首位發(fā)現(xiàn)「細菌」存在的人。
1833年
Brown(布朗):在顯微鏡下觀察紫羅蘭,隨后發(fā)表他對細胞核的詳細論述。
1838年
Schlieden and Schwann(雪萊敦及史汪):皆提倡細胞學原理,其主旨即為「有核細胞是所有動植物的組織及功能之基本元素」。
1857年
Kolliker(寇利克):發(fā)現(xiàn)肌肉細胞中之粒線體。
1876年
Abbe(阿比):剖析影像在顯微鏡中成像時所產(chǎn)生的繞射作用,試圖設計出最理想的顯微鏡。
1879年
Flrmming(佛萊明):發(fā)現(xiàn)了當動物細胞在進行有絲分裂時,其染色體的活動是清晰可見的。
1881年
Retziue(芮祖):動物組織報告問世,此項發(fā)表在當世尚無人能凌駕逾越。然而在20年后,卻有以Cajal(卡嘉爾)為首的一群組織學家發(fā)展出顯微鏡染色觀察法,此舉為日后的顯微解剖學立下了基礎。
1882年
Koch(寇克):利用苯安染料將微生物組織進行染色,由此他發(fā)現(xiàn)了霍亂及結核桿菌。往后20年間,其它的細菌學家,像是Klebs and Pasteur(克萊柏和帕斯特)則是藉由顯微鏡下檢視染色藥品而證實許多疾病的病因。
1886年
Zeiss(蔡氏):打破一般可見光理論上的極限,他的發(fā)明--阿比式及其它一系列的鏡頭為顯微學者另辟一新的解像天地。
1898年
Golgi(高爾基):首位發(fā)現(xiàn)細菌中高爾基體的顯微學家。他將細胞用硝酸銀染色而成就了人類細胞研究上的一大步。
1924年
Lacassagne(蘭卡辛):與其實驗工作伙伴共同發(fā)展出放射線照相法,這項發(fā)明便是利用放射性釙元素來探查生物標本。
1930年
Lebedeff(萊比戴衛(wèi)):設計并搭配第一架干涉顯微鏡。另外由Zernicke(卓尼柯)在1932年發(fā)明出相位差顯微鏡,兩人將傳統(tǒng)光學顯微鏡延伸發(fā)展出來的相位差觀察使生物學家得以觀察染色活細胞上的種種細節(jié)。
1941年
Coons(昆氏):將抗體加上螢光染劑用以偵測細胞抗原。
1952年
Nomarski(諾馬斯基):發(fā)明干涉相位差光學系統(tǒng)。此項發(fā)明不僅享有專利權并以發(fā)明者本人命名之。
1981年
Allen and Inoue(艾倫及艾紐):將光學顯微原理上的影像增強對比,發(fā)展趨于完美境界。
1988年
Confocal(共軛焦)掃瞄顯微鏡在市場上被廣為使用。
5. 放射線照相
醫(yī)學上的DR指的就是拍片子,DR的設備是在傳統(tǒng)的X線的基礎上,增加了計算機處理的一個數(shù)字化流程,使得圖像的質(zhì)量更高,所用的時間更短。
DR檢查項目已經(jīng)廣泛應用于臨床的診療工作中,常用來作為初步的檢查項目,例如可以進行頸椎、腰椎的初步篩查,判斷是否有頸椎病、腰椎間盤突出等。也可以作為常規(guī)骨外傷的首選檢查項目,能夠初步判斷是否有骨關節(jié)的骨折、脫位等情況,當然,還有最常用的胸片檢查。
6. 射線照相機
過地鐵安檢沒有什么影響的。微單相機是一種攝影設備,用于照像。地鐵安檢是對進站行李的安全檢查設施。地鐵是城市地下的交通列車,許多人都乘坐地鐵出行。為了保證運行安全,地鐵嚴禁帶危險品上車。所以,人們的行李都要過安檢,安檢對微單相機是不會有影響的。
7. 放射線照相術
1590年,荷蘭Z·Jansen(詹森)和意大利人的眼鏡制造者已經(jīng)造出類似顯微鏡的放大儀器。
1611年,Kepler(克卜勒):提議復合式顯微鏡的制作方式。
1665年,R·Hooke(羅伯特·虎克):「細胞」名詞的由來便由胡克利用復合式顯微鏡觀察軟木的木栓組織上的微小氣孔而得來的。
1674年,A·V·Leeuwenhoek(列文虎克):發(fā)現(xiàn)原生動物學的報導問世,并于九年后成為首位發(fā)現(xiàn)「細菌」存在的人。
1833年,Brown(布朗):在顯微鏡下觀察紫羅蘭,隨后發(fā)表他對細胞核的詳細論述。
1838年,Schlieden and Schwann(施萊登和施旺):皆提倡細胞學原理,其主旨即為「有核細胞是所有動植物的組織及功能之基本元素」。
1857年,Kolliker(寇利克):發(fā)現(xiàn)肌肉細胞中之線粒體。
1876年,Abbe(阿比):剖析影像在顯微鏡中成像時所產(chǎn)生的繞射作用,試圖設計出最理想的顯微鏡。
1879年,F(xiàn)lrmming(佛萊明):發(fā)現(xiàn)了當動物細胞在進行有絲分裂時,其染色體的活動是清晰可見的。
1881年,Retziue(芮祖):動物組織報告問世,此項發(fā)表在當世尚無人能凌駕逾越。然而在20年后,卻有以Cajal(卡嘉爾)為首的一群組織學家發(fā)展出顯微鏡染色觀察法,此舉為日后的顯微解剖學立下了基礎。
1882年,Koch(寇克):利用苯安染料將微生物組織進行染色,由此他發(fā)現(xiàn)了霍亂及結核桿菌。往后20年間,其它的細菌學家,像是Klebs 和 Pasteur(克萊柏和帕斯特)則是藉由顯微鏡下檢視染色藥品而證實許多疾病的病因。
1886年,Zeiss(蔡氏):打破一般可見光理論上的極限,他的發(fā)明--阿比式及其它一系列的鏡頭為顯微學者另辟一新的解像天地。
1898年,Golgi(高爾基):首位發(fā)現(xiàn)細菌中高爾基體的顯微學家。他將細胞用硝酸銀染色而成就了人類細胞研究上的一大步。
1924年,Lacassagne(蘭卡辛):與其實驗工作伙伴共同發(fā)展出放射線照相法,這項發(fā)明便是利用放射性釙元素來探查生物標本。
1930年,Lebedeff(萊比戴衛(wèi)):設計并搭配第一架干涉顯微鏡。
另外由Zernicke(卓尼柯)在1932年發(fā)明出相位差顯微鏡,兩人將傳統(tǒng)光學顯微鏡延伸發(fā)展出來的相位差觀察使生物學家得以觀察染色活細胞上的種種細節(jié)。
1941年,Coons(昆氏):將抗體加上螢光染劑用以偵測細胞抗原。
1952年,Nomarski(諾馬斯基):發(fā)明干涉相位差光學系統(tǒng)。此項發(fā)明不僅享有專利權并以發(fā)明者本人命名之。
1981年,Allen and Inoue(艾倫及艾紐):將光學顯微原理上的影像增強對比,發(fā)展趨于完美境界。
1988年,Confocal(共軛焦)掃描顯微鏡在市場上被廣為使用。
8. 可吸收射線照相術
X射線是一種波長很短的電磁波,其波長比可見光短得多。同其他電磁波一樣,X射線也具有波粒二象性,即同時具備波和粒子的特性。人體軟組織和骨骼吸收X射線的能力不同,因此X射線可用來檢查人體結構。;在醫(yī)院進行X射線檢查時,醫(yī)生們利用了它的幾大特點:;
首先,它具有很高的穿透本領,能直接穿透人體;
其次,它能讓很多固體材料發(fā)生肉眼可見的熒光,稱為熒光效應,這是X射線透視的基礎;
最后,它還能使照相底片感光,這是X射線攝片的物理原理。;醫(yī)生在進行X射線攝片時,將能感光的底片放在人體下方。
當X射線透過人體時,骨骼、牙齒等組織內(nèi)含有的鈣質(zhì)會吸收部分的射線,使到達底片的X射線減少,這樣就能在底片上留下組織的影子了。
這就像陽光下人的影子一樣。人類第一幅X線片就是德國大科學家倫琴為他夫人所拍的手骨特寫。其實不光是骨骼,其他凡是能夠吸收X射線的物體,都會在感光底片上留下它們的身影。X射線就是這樣一種神奇的射線。;不過,X射線能讓人體產(chǎn)生電離效應,造成一定的損傷,這也是在進行X射線檢查時需進行輻射防護的原因。